Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.439
Filtrar
1.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053361

RESUMO

DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Glicogênio , Longevidade , Receptor de Insulina , Estresse Fisiológico , Regulação para Cima , Animais , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético/efeitos da radiação , Glicogênio/biossíntese , Glicogênio/metabolismo , Resposta ao Choque Térmico/efeitos da radiação , Longevidade/fisiologia , Longevidade/efeitos da radiação , Mutação/genética , Pressão Osmótica/efeitos da radiação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estresse Fisiológico/efeitos da radiação , Análise de Sobrevida , Trealose/metabolismo , Raios Ultravioleta , Regulação para Cima/efeitos da radiação
2.
Plant Cell Physiol ; 63(1): 135-147, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34698867

RESUMO

In photoautotrophic Synechocystis sp. PCC 6803, NADPH is generated from photosynthesis and utilized in various metabolism, including the biosynthesis of glyceraldehyde 3-phosphate (the upstream substrate for carbon metabolism), poly(3-hydroxybutyrate) (PHB), photosynthetic pigments, and hydrogen gas (H2). Redirecting NADPH flow from one biosynthesis pathway to another has yet to be studied. Synechocystis's H2 synthesis, one of the pathways consuming NAD(P)H, was disrupted by the inactivation of hoxY and hoxH genes encoding the two catalytic subunits of hydrogenase. Such inactivation with a complete disruption of H2 synthesis led to 1.4-, 1.9-, and 2.1-fold increased cellular NAD(P)H levels when cells were cultured in normal medium (BG11), the medium without nitrate (-N), and the medium without phosphate (-P), respectively. After 49-52 d of cultivation in BG11 (when the nitrogen source in the media was depleted), the cells with disrupted H2 synthesis had 1.3-fold increased glycogen level compared to wild type of 83-85% (w/w dry weight), the highest level reported for cyanobacterial glycogen. The increased glycogen content observed by transmission electron microscopy was correlated with the increased levels of glucose 6-phosphate and glucose 1-phosphate, the two substrates in glycogen synthesis. Disrupted H2 synthesis also enhanced PHB accumulation up to 1.4-fold under -P and 1.6-fold under -N and increased levels of photosynthetic pigments (chlorophyll a, phycocyanin, and allophycocyanin) by 1.3- to 1.5-fold under BG11. Thus, disrupted H2 synthesis increased levels of NAD(P)H, which may be utilized for the biosynthesis of glycogen, PHB, and pigments. This strategy might be applicable for enhancing other biosynthetic pathways that utilize NAD(P)H.


Assuntos
Clorofila/biossíntese , Glicogênio/biossíntese , Hidrogênio/metabolismo , Hidroxibutiratos/metabolismo , NADP/metabolismo , Synechocystis/química , Synechocystis/genética , Synechocystis/metabolismo , Clorofila/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicogênio/genética , Redes e Vias Metabólicas , NADP/genética
3.
J Clin Endocrinol Metab ; 107(3): e1193-e1203, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34665856

RESUMO

CONTEXT: Exercise blunts the effect of beta2-agonists on peripheral glucose uptake and energy expenditure. Whether such attenuation extends into recovery is unknown. OBJECTIVE: To examine the effect of a beta2-agonist on leg glucose uptake and metabolic rate in recovery from exercise. METHODS: Using leg arteriovenous balance technique and analyses of thigh muscle biopsies, we investigated the effect of a beta2-agonist (24 mg of oral salbutamol) vs placebo on leg glucose, lactate, and oxygen exchange before and during quadriceps exercise, and 0.5 to 5 hours in recovery from quadriceps exercise, as well as on muscle glycogen resynthesis and activity in recovery. Twelve healthy, lean, young men participated. RESULTS: Before exercise, leg glucose uptake was 0.42 ±â€…0.12 and 0.20 ±â€…0.02 mmol × min-1 (mean ±â€…SD) for salbutamol and placebo (P = .06), respectively, while leg oxygen consumption was around 2-fold higher (P < .01) for salbutamol than for placebo (25 ±â€…3 vs 14 ±â€…1 mL × min-1). No treatment differences were observed in leg glucose uptake, lactate release, and oxygen consumption during exercise. But in recovery, cumulated leg glucose uptake, lactate release, and oxygen consumption was 21 mmol (95% CI 18-24, P = .018), 19 mmol (95% CI 16-23, P < .01), and 1.8 L (95% CI 1.6-2.0, P < .01) higher for salbutamol than for placebo, respectively. Muscle glycogen content was around 30% lower (P < .01) for salbutamol than for placebo in recovery, whereas no treatment differences were observed in muscle glycogen resynthesis or glycogen synthase activity. CONCLUSION: Exercise blunts the effect of beta2-agonist salbutamol on leg glucose uptake, but this attenuation diminishes in recovery. Salbutamol increases leg lactate release in recovery, which may relate to glycolytic trafficking due to excessive myocellular glucose uptake.


Assuntos
Albuterol/administração & dosagem , Exercício Físico , Glucose/metabolismo , Glicogênio/biossíntese , Músculo Esquelético/efeitos dos fármacos , Adulto , Biópsia , Metabolismo Energético , Glucose/análise , Glicogênio/análise , Glicólise/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Coxa da Perna
4.
J Nutr Biochem ; 100: 108881, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34653600

RESUMO

Coffee effects on glucose homeostasis in obesity remain controversial. We investigated whether coffee mitigates the negative effects on glucose metabolism induced by a high-fat diet and the interrelationships with redox-inflammatory responses. Rats were treated with: control (CT-); coffee (CT+) 3.9 g of freeze-dried coffee/kg of diet; high-fat (HF-); or high-fat + coffee 3.9 g of freeze-dried coffee/kg of diet (HF+) diet. The high-fat diet increased weight gain, feed efficiency, HOMA ß, muscle and hepatic glycogen, intestinal CAT and SOD activity, hepatic protein (CARB) and lipid oxidation (MDA), muscle Prkaa1 mRNA and IL6 levels, and decreased food intake, hepatic GR, GPX and SOD activities, intestinal CARB, intestinal Slc2a2 and Slc5a1 and hepatic Prkaa1 and Prkaa2 mRNA levels, hepatic glucose-6-phosphatase and muscle hexokinase (HK) activities, compared to the control diet. The high-fat diet with coffee increased hepatic GST activity and TNF and decreased IL6 and intestinal glucosidase activity compared with the high-fat diet. The coffee diet increased muscle glycogen, hepatic CARB and PEPCK activity, and decreased hepatic GR and SOD activities and intestinal CARB, compared with the control diet. Coffee increased insulin levels, HOMA IR/ß, FRAP, muscle Prkaa1 mRNA levels and hepatic and muscle phosphofructokinase-1, and it decreased intestinal CAT, hepatic Slc2a2 mRNA levels and muscle HK activity, regardless of the diet type. In conclusion, chronic coffee consumption improves antioxidant and anti-inflammatory responses, but does not ameliorate glucose homeostasis in a high-fat diet-induced obesity model. In addition, coffee consumption increases insulin secretion and promotes muscle glycogen synthesis in rats maintained on a control diet.


Assuntos
Glicemia/metabolismo , Café , Dieta Hiperlipídica , Inflamação/metabolismo , Obesidade/metabolismo , Animais , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Citocinas/sangue , Glicogênio/biossíntese , Homeostase , Insulina/sangue , Intestino Delgado/metabolismo , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Oxirredução , Ratos , Ratos Wistar
5.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622807

RESUMO

The signaling mechanisms by which dietary fat and cholesterol signals regulate central pathways of glucose homeostasis are not completely understood. By using a hepatocyte-specific PKCß-deficient (PKCßHep-/-) mouse model, we demonstrated the role of hepatic PKCß in slowing disposal of glucose overload by suppressing glycogenesis and increasing hepatic glucose output. PKCßHep-/- mice exhibited lower plasma glucose under the fed condition, modestly improved systemic glucose tolerance and mildly suppressed gluconeogenesis, increased hepatic glycogen accumulation and synthesis due to elevated glucokinase expression and activated glycogen synthase (GS), and suppressed glucose-6-phosphatase expression compared with controls. These events were independent of hepatic AKT/GSK-3α/ß signaling and were accompanied by increased HNF-4α transactivation, reduced FoxO1 protein abundance, and elevated expression of GS targeting protein phosphatase 1 regulatory subunit 3C in the PKCßHep-/- liver compared with controls. The above data strongly imply that hepatic PKCß deficiency causes hypoglycemia postprandially by promoting glucose phosphorylation via upregulating glucokinase and subsequently redirecting more glucose-6-phosphate to glycogen via activating GS. In summary, hepatic PKCß has a unique and essential ability to induce a coordinated response that negatively affects glycogenesis at multiple levels under physiological postprandial conditions, thereby integrating nutritional fat intake with dysregulation of glucose homeostasis.


Assuntos
Glicemia/metabolismo , Gorduras na Dieta , Glicogênio/biossíntese , Fígado/metabolismo , Proteína Quinase C beta/genética , Animais , Colesterol na Dieta , Proteína Forkhead Box O1/metabolismo , Glucoquinase/metabolismo , Gluconeogênese/genética , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Knockout , Período Pós-Prandial/genética , Proteína Quinase C beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
6.
J Ethnopharmacol ; 281: 114556, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34438036

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aloe vera (L.) Burm.f. is an ancient medicinal plant that belongs to the family Asphodelaceae. It has a rich source of bioactive constituents such as carbohydrates, polyphenols, peptides, sterols and tannins, etc. Aloe vera has multiple biological activities such as anti-inflammatory, antioxidant and antidiabetic activity etc. AIM OF THE STUDY: The present study investigated the antidiabetic mechanism of Aloe vera carbohydrate fraction (AVCF) and aimed to provide insights into the regulation of carbohydrate metabolism enzymes in glucose homeostasis. MATERIALS AND METHODS: The antidiabetic effect of AVCF was evaluated using α-amylase, α-glucosidase inhibition, glucose diffusion and glucose uptake assay. The in vitro AVCF effect on insulin secretion, cell proliferation and inflammatory markers were determined using streptozotocin-induced oxidative stress on RIN-m5F cells. Streptozotocin-induced male Wistar diabetic rats were treated for 21 days with AVCF (54 mg/kg bw). The in vivo AVCF effect was measured on fasting plasma glucose, insulin, glucagon, hexokinase, glycogen synthase and glucose-6-phosphatase, levels in diabetic rats. Histopathological studies for organ-specific effects in the pancreas, liver and small intestine were also conducted. RESULTS: AVCF-treated RIN-m5F cells significantly increased BrdU levels, with insulin secretion, and decreased TNF-α, IL-6 and nitric oxide levels. AVCF treated streptozotocin-induced diabetic rats showed significantly decreased fasting plasma glucose, glucagon and glucose-6-phosphatase levels with a concomitant increase in insulin, hexokinase, and glycogen synthase levels and, glycogen content. These findings corroborate with the improved hepatic glycogen content in the PAS stained histological section of the liver of AVCF treated diabetic rats. CONCLUSION: These results suggest that CF of Aloe vera improved glucose metabolism by activation of glycogenesis and down-regulation of gluconeogenesis thereby, maintaining glucose homeostasis. Hence, AVCF can be used as an alternative medicine in the alleviation of diabetes mellitus symptoms.


Assuntos
Aloe/química , Carboidratos/farmacologia , Glucose/metabolismo , Glicogênio/biossíntese , Fígado/efeitos dos fármacos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Inflamação/sangue , Inflamação/metabolismo , Insulina/sangue , Ilhotas Pancreáticas/efeitos dos fármacos , Fígado/metabolismo , Masculino , Óxido Nítrico/sangue , Distribuição Aleatória , Ratos , Ratos Wistar
7.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330832

RESUMO

UDP-glucose pyrophosphorylase 2 (UGP2), the enzyme that synthesizes uridine diphosphate (UDP)-glucose, rests at the convergence of multiple metabolic pathways, however, the role of UGP2 in tumor maintenance and cancer metabolism remains unclear. Here, we identify an important role for UGP2 in the maintenance of pancreatic ductal adenocarcinoma (PDAC) growth in both in vitro and in vivo tumor models. We found that transcription of UGP2 is directly regulated by the Yes-associated protein 1 (YAP)-TEA domain transcription factor (TEAD) complex, identifying UGP2 as a bona fide YAP target gene. Loss of UGP2 leads to decreased intracellular glycogen levels and defects in N-glycosylation targets that are important for the survival of PDACs, including the epidermal growth factor receptor (EGFR). These critical roles of UGP2 in cancer maintenance, metabolism, and protein glycosylation may offer insights into therapeutic options for otherwise intractable PDACs.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicogênio/biossíntese , Neoplasias Pancreáticas/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glicosilação , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Neoplasias Pancreáticas/patologia , Fatores de Transcrição de Domínio TEA/genética , Fatores de Transcrição de Domínio TEA/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
8.
J Cereb Blood Flow Metab ; 41(12): 3213-3231, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34187232

RESUMO

Autophagy is essential to cell function, as it enables the recycling of intracellular constituents during starvation and in addition functions as a quality control mechanism by eliminating spent organelles and proteins that could cause cellular damage if not properly removed. Recently, we reported on Wdfy3's role in mitophagy, a clinically relevant macroautophagic scaffold protein that is linked to intellectual disability, neurodevelopmental delay, and autism spectrum disorder. In this study, we confirm our previous report that Wdfy3 haploinsufficiency in mice results in decreased mitophagy with accumulation of mitochondria with altered morphology, but expanding on that observation, we also note decreased mitochondrial localization at synaptic terminals and decreased synaptic density, which may contribute to altered synaptic plasticity. These changes are accompanied by defective elimination of glycogen particles and a shift to increased glycogen synthesis over glycogenolysis and glycophagy. This imbalance leads to an age-dependent higher incidence of brain glycogen deposits with cerebellar hypoplasia. Our results support and further extend Wdfy3's role in modulating both brain bioenergetics and synaptic plasticity by including glycogen as a target of macroautophagic degradation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Encéfalo/metabolismo , Gluconeogênese , Glicogênio/biossíntese , Mitocôndrias/metabolismo , Mitofagia , Plasticidade Neuronal , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Relacionadas à Autofagia/genética , Glicogênio/genética , Haploinsuficiência , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética
9.
Med Sci Sports Exerc ; 53(11): 2425-2435, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34107509

RESUMO

PURPOSE: To investigate the effects of a single session of either peristaltic pulse dynamic leg compressions (PPDC) or local heat therapy (HT) after prolonged intermittent shuttle running on skeletal muscle glycogen content, muscle function, and the expression of factors involved in skeletal muscle remodeling. METHODS: Twenty-six trained individuals were randomly allocated to either a PPDC (n = 13) or a HT (n = 13) group. After completing a 90-min session of intermittent shuttle running, participants consumed 0.3 g·kg-1 protein plus 1.0 g·kg-1 carbohydrate and received either PPDC or HT for 60 min in one randomly selected leg, while the opposite leg served as control. Muscle biopsies from both legs were obtained before and after exposure to the treatments. Muscle function and soreness were also evaluated before, immediately after, and 24 h after the exercise bout. RESULTS: The changes in glycogen content were similar (P > 0.05) between the thigh exposed to PPDC and the control thigh ~90 min (Control: 14.9 ± 34.3 vs PPDC: 29.6 ± 34 mmol·kg-1 wet wt) and ~210 min (Control: 45.8 ± 40.7 vs PPDC: 52 ± 25.3 mmol·kg-1 wet wt) after the treatment. There were also no differences in the change in glycogen content between thighs ~90 min (Control: 35.9 ± 26.1 vs HT: 38.7 ± 21.3 mmol·kg-1 wet wt) and ~210 min (Control: 61.4 ± 50.6 vs HT: 63.4 ± 17.5 mmol·kg-1 wet wt) after local HT. The changes in peak torque and fatigue resistance of the knee extensors, muscle soreness, and the mRNA expression and protein abundance of select factors were also similar (P > 0.05) in both thighs, irrespective of the treatment. CONCLUSIONS: A single 1-h session of either PPDC or local HT does not accelerate glycogen resynthesis and the recovery of muscle function after prolonged intermittent shuttle running.


Assuntos
Glicogênio/biossíntese , Temperatura Alta/uso terapêutico , Dispositivos de Compressão Pneumática Intermitente , Músculo Esquelético/metabolismo , Corrida/fisiologia , Adolescente , Adulto , Feminino , Humanos , Joelho/fisiologia , Masculino , Fadiga Muscular , Proteínas Musculares/metabolismo , Força Muscular , Mialgia/terapia , RNA Mensageiro/metabolismo , Torque , Adulto Jovem
10.
Biosci Biotechnol Biochem ; 85(6): 1441-1447, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33749776

RESUMO

Glycogen synthesis in bacteria is mainly organized by the products of glgB, glgC, and glgA genes comprising the widely known glg operon. On the genome of extremely halophilic archaeon Haloarcula japonica, there was a gene cluster analogous to the bacterial glg operon. In this study, we focused on a GlgC homolog of Ha. japonica, and its recombinant enzyme was prepared and characterized. The enzyme showed highest activity toward GTP and glucose-1-phosphate as substrates in the presence of 2.6 m KCl and predicted to be work as "GDP-glucose pyrophosphorylase" in Ha. japonica.


Assuntos
Proteínas Arqueais/genética , Haloarcula/genética , Homologia de Sequência do Ácido Nucleico , Proteínas Arqueais/metabolismo , Glicogênio/biossíntese , Guanosina Trifosfato/metabolismo , Haloarcula/metabolismo , Óperon/genética
11.
J Cell Mol Med ; 25(5): 2714-2724, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33523562

RESUMO

Abnormal glucose metabolism may contribute to cancer progression. As a member of the CRK (v-crk sarcoma virus CT10 oncogene homologue) adapter protein family, CRKL (CRK-like) associated with the development and progression of various tumours. However, the exact role and underlying mechanism of CRKL on energy metabolism remain unknown. In this study, we investigated the effect of CRKL on glucose metabolism of hepatocarcinoma cells. CRKL and PI3K were found to be overexpressed in both hepatocarcinoma cells and tissues; meanwhile, CRKL up-regulation was positively correlated with PI3K up-regulation. Functional investigations revealed that CRKL overexpression promoted glucose uptake, lactate production and glycogen synthesis of hepatocarcinoma cells by up-regulating glucose transporters 1 (GLUT1), hexokinase II (HKII) expression and down-regulating glycogen synthase kinase 3ß (GSK3ß) expression. Mechanistically, CRKL promoted glucose metabolism of hepatocarcinoma cells via enhancing the CRKL-PI3K/Akt-GLUT1/HKII-glucose uptake, CRKL-PI3K/Akt-HKII-glucose-lactate production and CRKL-PI3K/Akt-Gsk3ß-glycogen synthesis. We demonstrate CRKL facilitates HCC malignancy via enhancing glucose uptake, lactate production and glycogen synthesis through PI3K/Akt pathway. It provides interesting fundamental clues to CRKL-related carcinogenesis through glucose metabolism and offers novel therapeutic strategies for hepatocarcinoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Glucose/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Glicogênio/biossíntese , Humanos , Neoplasias Hepáticas/patologia , Proteômica/métodos , Transdução de Sinais
12.
Phytomedicine ; 83: 153473, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33513558

RESUMO

BACKGROUND: Diabetes mellitus is a chronic metabolic disease characterized by increased blood glucose levels. In order to lower blood glucose, it is important to stimulate glucose uptake and glycogen synthesis in the muscle. (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone (HM-chromanone), a constituent isolated from Portulaca oleracea L., exhibits anti-diabetic effects; however, its mechanisms are not yet clearly understood on glucose uptake and glycogen synthesis in muscle cells. PURPOSE: In the present study, we examined the effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells and elucidated the underlying mechanisms. METHODS: The effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells were assessed by 2-Deoxyglucose uptake assay. Western blot analysis was carried out to elucidate the underlying molecular mechanisms. RESULTS: We found that HM-chromanone promoted glucose uptake into L6 skeletal muscle cells in a dose-dependent manner. Moreover, HM-chromanone induced the phosphorylation of IRS-1Tyr612 and AKTSer473, and the activation of PI3K. HM-chromanone also stimulated the phosphorylation of AMPKThr172, AS160Thr642, TBC1D1Ser237, and ACC via the CaMKKß pathway. Furthermore, HM-chromanone increased glycogen synthesis through the inactivation of glycogen synthase kinase 3 α/ß. CONCLUSION: The results of this study indicate that HM-chromanone stimulates glucose uptake through the activation of the PI3K/AKT and CaMKKß-AMPK pathways and glycogen synthesis via the GSK3 α/ß pathway in L6 skeletal muscle cells.


Assuntos
Flavonoides/farmacologia , Glucose/metabolismo , Glicogênio/biossíntese , Músculo Esquelético/efeitos dos fármacos , Portulaca/química , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Desoxiglucose/metabolismo , Glicogênio/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
13.
Nature ; 590(7844): 122-128, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33473210

RESUMO

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Assuntos
Envelhecimento/metabolismo , Disfunção Cognitiva/prevenção & controle , Células Mieloides/metabolismo , Adulto , Idoso , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Respiração Celular , Células Cultivadas , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Dinoprostona/metabolismo , Metabolismo Energético , Glucose/metabolismo , Glicogênio/biossíntese , Glicogênio/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Transtornos da Memória/tratamento farmacológico , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Mitocôndrias/metabolismo , Células Mieloides/imunologia , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP2/deficiência , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
14.
Med Sci Sports Exerc ; 53(2): 384-393, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826640

RESUMO

INTRODUCTION/PURPOSE: Evidence suggests that carbohydrate and protein (CHO-PRO) ingestion after exercise enhances muscle glycogen repletion to a greater extent than carbohydrate (CHO) alone. However, there is no consensus at this point, and results across studies are mixed, which may be attributable to differences in energy content and carbohydrate intake relative to body mass consumed after exercise. The purpose of this study was determine the overall effects of CHO-PRO and the independent effects of energy and relative carbohydrate content of CHO-PRO supplementation on postexercise muscle glycogen synthesis compared with CHO alone. METHODS: Meta-analysis was conducted on crossover studies assessing the influence of CHO-PRO compared with CHO alone on postexercise muscle glycogen synthesis. Studies were identified in a systematic review from PubMed and Cochrane Library databases. Data are presented as effect size (95% confidence interval [CI]) using Hedges' g. Subgroup analyses were conducted to evaluate effects of isocaloric and nonisocaloric energy content and dichotomized by median relative carbohydrate (high, ≥0.8 g·kg-1⋅h-1; low, <0.8 g·kg-1⋅h-1) content on glycogen synthesis. RESULTS: Twenty studies were included in the analysis. CHO-PRO had no overall effect on glycogen synthesis (0.13, 95% CI = -0.04 to 0.29) compared with CHO. Subgroup analysis found that CHO-PRO had a positive effect (0.26, 95% CI = 0.04-0.49) on glycogen synthesis when the combined intervention provided more energy than CHO. Glycogen synthesis was not significant (-0.05, 95% CI = -0.23 to 0.13) in CHO-PRO compared with CON when matched for energy content. There was no statistical difference of CHO-PRO on glycogen synthesis in high (0.07, 95% CI = -0.11 to 0.22) or low (0.21, 95% CI = -0.08 to 0.50) carbohydrate content compared with CHO. CONCLUSION: Glycogen synthesis rates are enhanced when CHO-PRO are coingested after exercise compared with CHO only when the added energy of protein is consumed in addition to, not in place of, carbohydrate.


Assuntos
Carboidratos da Dieta/administração & dosagem , Proteínas na Dieta/administração & dosagem , Exercício Físico/fisiologia , Glicogênio/biossíntese , Músculo Esquelético/metabolismo , Humanos
15.
Neurobiol Dis ; 147: 105173, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171226

RESUMO

Lafora disease (LD) is a fatal adolescence-onset neurodegenerative condition. The hallmark of LD is the accumulation of aberrant glycogen aggregates called Lafora bodies (LBs) in the brain and other tissues. Impeding glycogen synthesis from early embryonic stages by genetic suppression of glycogen synthase (MGS) in an animal model of LD prevents LB formation and ultimately the pathological manifestations of LD thereby indicating that LBs are responsible for the pathophysiology of the disease. However, it is not clear whether eliminating glycogen synthesis in an adult animal after LBs have already formed would halt or reverse the progression of LD. Herein we generated a mouse model of LD with inducible MGS suppression. We evaluated the effect of MGS suppression at different time points on LB accumulation as well as on the appearance of neuroinflammation, a pathologic trait of LD models. In the skeletal muscle, MGS suppression in adult LD mice blocked the formation of new LBs and reduced the number of glycogen aggregates. In the brain, early but not late MGS suppression halted the accumulation of LBs. However, the neuroinflammatory response was still present, as shown by the levels of reactive astrocytes, microglia and inflammatory cytokines. Our results confirm that MGS as a promising therapeutic target for LD and highlight the importance of an early diagnosis for effective treatment of the disease.


Assuntos
Encéfalo/patologia , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Doença de Lafora/patologia , Músculo Esquelético/patologia , Animais , Modelos Animais de Doenças , Glicogênio/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Poult Sci ; 99(11): 5587-5597, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142476

RESUMO

The aim of the research was to evaluate the dynamic changes of early posthatch starvation on residual yolk absorption, synthesis of macronutrients (protein, lipid, and glycogen), and organ development in broiler chicks. A total of 720 1-day-old chicks (Lingnan Yellow) were randomly assigned to 3 treatments: group A (nonfasted), group B (fasting for 24 h after placement), and group C (fasting for 48 h after placement). The trial lasted for 168 h, and water was provided ad libitum all the time. Sampling was performed at 0, 24, 48, 72, 120, and 168 h. Nonfasting (group A) promoted (P < 0.05) the absorption of amino acids, fatty acids, mineral elements, protein, and maternal antibody in the residual yolk of broiler chicks. The concentration of insulin-like growth factor 1 in plasma and the liver was higher (P < 0.05) in group A. Nonfasting enhanced (P < 0.05) the synthesis of protein and glycogen in the breast muscle and liver; the relative weights of the liver, pancreas, and spleen; and body weight, but retarded (P < 0.05) the synthesis of triglyceride in the liver. The results indicated that nonfasting (group A) after placement promoted the absorption of residual yolk and synthesis of protein and glycogen in the breast muscle and liver, whereas early feed deprivation promoted the synthesis of lipid in the liver. Thereby, nonfasting after placement promoted organ development and body growth of broiler chicks.


Assuntos
Estruturas Animais , Galinhas , Gema de Ovo , Privação de Alimentos , Estruturas Animais/crescimento & desenvolvimento , Animais , Peso Corporal , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Gema de Ovo/metabolismo , Privação de Alimentos/fisiologia , Glicogênio/biossíntese , Nutrientes/biossíntese , Biossíntese de Proteínas/fisiologia , Distribuição Aleatória
17.
PLoS Genet ; 16(11): e1009220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253187

RESUMO

Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.


Assuntos
Histona Acetiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Glicogênio/biossíntese , Histona Acetiltransferases/genética , Lisina/metabolismo , Dinâmica Mitocondrial/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
18.
Biochem Cell Biol ; 98(6): 683-697, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33215509

RESUMO

The skeletal muscle regulates glucose homeostasis. Here, the effects of vitamin A metabolites including retinoic acid (RA) alone, and in combination with insulin, on glucose utilization were investigated in rat L6 muscle cells during the differentiation process. L6 cells were treated with differentiation medium containing retinol, retinal, RA, and (or) insulin. The glucose levels and pH values in the medium were measured every 2 days. The expression levels of insulin signaling and glycogen synthesis proteins, as well as glycogen content were determined. Retinal and RA reduced the glucose content and pH levels in the medium of the L6 cells. RA acted synergistically with insulin to reduce glucose and pH levels in the medium. The RA- and insulin-mediated reduction of glucose in the medium only occurred when glucose levels were at or above 15 mmol/L. Insulin-induced phosphorylation of Akt Thr308 was further enhanced by RA treatment through the activation of retinoic acid receptor. RA acted synergistically with insulin to phosphorylate glycogen synthase kinase 3ß, and dephosphorylate glycogen synthase (GS), which was associated with increases in the protein and mRNA levels of GS. Increases in glycogen content were induced by insulin, and was further enhanced in the presence of RA. We conclude that activation of the RA signaling pathway enhanced insulin-induced glucose utilization in differentiating L6 cells through increases in glycogenesis.


Assuntos
Glucose/metabolismo , Glicogênio/biossíntese , Insulina/farmacologia , Músculo Esquelético/metabolismo , Tretinoína/farmacologia , Animais , Linhagem Celular , Ratos
19.
Am J Physiol Cell Physiol ; 319(6): C1151-C1157, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026831

RESUMO

Branched-chain amino acids (BCAAs) are essential for critical metabolic processes; however, recent studies have associated elevated plasma BCAA levels with increased risk of insulin resistance. Using skeletal muscle cells, we aimed to determine whether continued exposure of high extracellular BCAA would result in impaired insulin signaling and whether the compound sodium phenylbutyrate (PB), which induces BCAA metabolism, would lower extracellular BCAA, thereby alleviating their potentially inhibitory effects on insulin-mediated signaling. Prolonged exposure of elevated BCAA to cells resulted in impaired insulin receptor substrate 1/AKT signaling and insulin-stimulated glycogen synthesis. PB significantly reduced media BCAA and branched-chain keto acid concentrations and increased phosphorylation of AKT [+2.0 ± 0.1-fold; P < 0.001 versus without (-)PB] and AS160 (+3.2 ± 0.2-fold; P < 0.001 versus -PB); however, insulin-stimulated glycogen synthesis was further reduced upon PB treatment. Continued exposure of high BCAA resulted in impaired intracellular insulin signaling and glycogen synthesis, and while forcing BCAA catabolism using PB resulted in increases in proteins important for regulating glucose uptake, PB did not prevent the impairments in glycogen synthesis with BCAA exposure.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Glicogênio/biossíntese , Resistência à Insulina/fisiologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Células Musculares/metabolismo , Fenilbutiratos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Physiol Genomics ; 52(10): 451-467, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866087

RESUMO

Little is known about gene regulation by fasting in human adipose tissue. Accordingly, the objective of this study was to investigate the effects of fasting on adipose tissue gene expression in humans. To that end, subcutaneous adipose tissue biopsies were collected from 11 volunteers 2 and 26 h after consumption of a standardized meal. For comparison, epididymal adipose tissue was collected from C57Bl/6J mice in the ab libitum-fed state and after a 16 h fast. The timing of sampling adipose tissue roughly corresponds with the near depletion of liver glycogen. Transcriptome analysis was carried out using Affymetrix microarrays. We found that, 1) fasting downregulated numerous metabolic pathways in human adipose tissue, including triglyceride and fatty acid synthesis, glycolysis and glycogen synthesis, TCA cycle, oxidative phosphorylation, mitochondrial translation, and insulin signaling; 2) fasting downregulated genes involved in proteasomal degradation in human adipose tissue; 3) fasting had much less pronounced effects on the adipose tissue transcriptome in humans than mice; 4) although major overlap in fasting-induced gene regulation was observed between human and mouse adipose tissue, many genes were differentially regulated in the two species, including genes involved in insulin signaling (PRKAG2, PFKFB3), PPAR signaling (PPARG, ACSL1, HMGCS2, SLC22A5, ACOT1), glycogen metabolism (PCK1, PYGB), and lipid droplets (PLIN1, PNPLA2, CIDEA, CIDEC). In conclusion, although numerous genes and pathways are regulated similarly by fasting in human and mouse adipose tissue, many genes show very distinct responses to fasting in humans and mice. Our data provide a useful resource to study adipose tissue function during fasting.


Assuntos
Jejum/sangue , Regulação da Expressão Gênica , Transdução de Sinais/genética , Gordura Subcutânea/metabolismo , Transcriptoma , Adulto , Idoso , Animais , Ácidos Graxos/biossíntese , Glicogênio/biossíntese , Voluntários Saudáveis , Humanos , Insulina/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosforilação Oxidativa , Gordura Subcutânea/patologia , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...